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APPLIG0ILITY OF S.IMILARITY PRINCIPLES TO STRUCTURAL MODELS 

By J,. .N. Goodier and W.. T. Thomson 
. 

I, SIKILARXTY PRINCIPLES FOR STRUCTURAL AND DYNAMICAL MODELS 

SUNMARY 

A systematio account is given in part I of the use 
of dimensional analys%s in constructing similarity con- 
ditions for models and structures. The analysis cover% 
large deflectisns., buckling, pxastio behavior, and ma- 
terials with nonlinear stress-strain characteristics, as 
well as the simpler structural problems. 

rl 1, INTRODUCTION 

--I--. ‘-. 

.-,* - Similarity principles for guidance and interpreta- 
tion of mpdel tests in enginebring frequently have been 
based on the differential equations of the problem or on 
more or less intuitive conceptions of what similarity 
means, 88, f&r example, in'fluid mechanias when similarity 
is taken to mean that the ratios of inertia, viscous, and 
gravity forces at corresponding points are the same, or 
that the streamline patterns are geometrically similar. 
It is now recognized, however, that it is much more satis- 
factory to apply the general dimensional analysis Of 3. 
Buckingham (reference 1) and P. W. Bridgman (reference 2). 
This method has been thoroughly developed in general phys- 
ics and fluid mechanics, but apparently not in structural 
mechanios,. 

*. 

The question as to what is meant by structural sim- 
ilarity frequently can be answered in a very simple manner, 
But the uomplications implied by the dse of several mate- 
rials in a single structure, the use of models not made 
of the same material as the prototype, buck+ing and 
related behavior, pls,stfP flow-, thermal strees, a-nd the 

RESTRI GTED 
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various combinations of these, besides the problems of 
fluid-structure combinations, as for instanoe in dams, 
wind vibrations in suspension bridges, and flutter, re- 
quire an analysis more comprehensive than immediate in- 
tuitfve notions can well supply. Such an analysis oan 
be as readily made, by the methods &f Buokingham and 
Bridgman, in solid meohanios, or for solid plus fluid 
problems, as in fluid mechanics. Nonlinear problems, 
buckling criterions, plastic flow, all 'can be dealt with, 
although at ffret sight the lack of adequately defined 
physical oonstants to characterine the inelastic prop- 
ert;'fes of materials seems to put obstacles in the way of 
dimensional analysss, with its primary requirement that 
a list of symbols concerned be drawn up. 

The author is, indebted to Drs. Tuckerman, Ramberg, 
and Osgood for the suggestfan that an investigation Of 
similarity under af$.ine stress-strain relations would be 
desirable. 

2. DI2CSNSIONAL ANALYSIS AND SIMILARITY PRINCIPLES - 

NONDIMENSIONAL QUANTITIES -DIMENSIONAL CONSTANTS 

Only a brief introductory account of dimensional 
analysis is given here. 3’or a full aooount the reader is 
referred to references 1 and 2. 

As Bridgman (reference 2) emphasizes, the first ob- 
jeot of dimensional analysis is to-make.sure that the 
formula for a required quantity, as the solution Of a 
definite physical problem, will be valid no matter what 
system of units is used to give numerical values to the 
quantEties concerned, just as the bending stresa formula 
U=; MC/I yields the same physical stress in tons per 
square foot, if tons and feet are used as units' for M, 
=, and I, as it does in pounds per square inch, if 
pounds and inches are used as units. 

This validity in all unit systems is, of oeurse, 
. . i -I 'T .Li. 

equally well expressed by the statement that -JI- 
MC 

is the 

same in all unit systems, and this is what is meant by 
ndimensfonless.s 
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Let the list of symbols concerned in a problem be 
Xl, X8, x3 - - -0 xy being sought In terms of the others. 

'There usually will be several dimensionless groups (prod- 
ucts of powers of the symbOl8), say n-1. =,, and 80 
forth, and it may be shown that the number of independent 
groups is-equal to the number of original symbols leas 
the number of fundamental units, Buckingham's II-theorem 
states that, when there is only u relation between the 
symbols, it must, in order to be valid in all unit systems, 
take the form 

rrl = f'(I&, II,, - - -1 (11 . 

with f( ) as a constant if there is only one dimension- 
less group I-I,. When there is more than one relation be- 
tween the symbols, the requirement of validity in all 
unit systems oan be satisfied without dimensional homogec 

neity, as Bridgman illustrates by adding- Y = gt' to 

8 = sea . to obtain v+ s=gt+ *gt2. 

L - 

- 

. 

The problem contemplated so far is the following: 
Given a set of symbols, representing the numerical meas- 
ures of the corresponding physical quantities (as soon as 
a unit system is selected), what restrictions on the 
funot.ional relation them'are implied by the re- 
quirement that it s alid in all unit systems? In 
aontemplating a ohange of units, of course+ only a single 
feature of a definite physical system is considered - for 
example, the stress of a given kind at a given point of a 
given structure with given loads, This, however, is to 
be obtained from a, formula of the type of equation (l), 
In such a formula it is sUppOSed that all quantities 
which may be represented by variable numbers, including 
physical variables and'physical "constants" whioh may 
change in numerical value with change of unit system, and 
SO are not dimea8ionless, are represented by symbols, 
The functional relation then holds for variations of its 
arguments, no matter how produoed. The form (equation 
(1)) SO arranges the relation that in faot no variations 
in the II's, and thus in the value of the function, 
OCOUT when the numerical value of the original symbols 
change8 by change of unit system, 

But the functional relation (equation (1)) is valid 
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for all values of the symbols in the ranges permitted by 
physical considerations, Just as uI/Mc = 1 is valid for 
all permitted values of Q, I, M, c. Changes can thus be 

3 
oontemplated in the values of the symbols cerresponding 
not to a ohange of units for a given physical system, say 
a struature with given leads, but to a passage from this 

-. to another struoture with other loads, of course, within 
the class of structures and loads covered by the contem- 
plated formula, as., for instance, the class of beams and 
loads covered by uI/Mo = 1, Then without knowing the 
funOtiona1 form f in equatfon (11, it can be said that 
$f the groups n,, =, - - r $n equation (1) have the 
same values in the two systemst then f ( ) and therefore 
=1 will have the same value for the two systems,l The 
equality of the groups in f( ) thus provides a set of 
"similarity conditions" governing the ooaatructioa of a 
model, and equality of the nl's for model and structure 

' , then provfdes a similarity relation by whioh a measure- 
ment on the .model can be made to yield the #orresponding 
quantity for the structure. This analysis is applied in 
what follow5 to various types of structural problem, 

I 

---a 

In making such applications it is necessary, of 
course, to be able to assign "dimensions" to all quaati- 
ties Oonoerned. An aagle is commonly regarded as a di- 
mensionless quaktity, radian measure being obtained by 
dividiag Length 3.y length, The sigaifiaaace of sdimen- 
sioaless5 here is merely that radian measure does h&t 
change when the length unit is ohaaged, But "angle" is 
not dimensionless~ if chkges to degrees or revolutions 
are contemplated, and suoh ohaages should, of cburse, be 
considered if anything caa be deduced therefrom. This is 
6ometfmes the case, as appears later. However, if this 
is done, the equatfon relating angular measure 6 to are 
5 and radius r must be wrttten 

, (2) 

4 

where C has the value 1 when the radian is the angular 

unit, 180 
n 

when the degree is the unit, and SO On. 

l IlPhis assumes that the function is single-valued in 
all'its arguments. Stress i,s &.a single-valued function 
of strain beyond the elastic range, where the curve of 
rising stres's is not the same as the curve of falling 
stress. Thus, results base.d on such a relatton are not 
necessarily subJect to the present analysis, This is dis- 
cussed further in sec.. 8, 
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Otherwise any calculation involving such a relation is 
not valid in all unit systems. The "cons$aat" C isa 
"dimensional Constant" and has the dimension of an angle. 

Strain, as inches extension per inch of length, or 
centimeters per centim.eter, and so on, is also commonly 
treated as dimensionless. It can, however, also be meas- 
ured in centimeters per inch, or if the use of two length 
units is objeotionab')e, in any'arbitrary unit such as the 
"microstrain" - 10-e centimeter per centimeter. It is 
then necessary to write the strain e in term5 of ex- 
tension 6 on a length E as 

where C is a dimensional oonstaat, having the same di- 
mension as strain, with the value 1 when strain is meas- 
ured in the usual manner. 

Dimensional constants of this kind, as well as "phys- 
ical constants,* must be included in the list of symbols 
for any problem the solution of which requires the equa- 
tion in which they occur, #or the final formula will not, 
in general, be valid in all unit systems unless the equa- 
tions used in deriving it had this property. Of course, 
the C of equation (2) usually is not included in dimen- 
sional analyses. St usually is fixed as unity by the 
tacit decision not to consider any ohange of angle unit 
from the radian, As will appear in a later section, the 
omission of the C of equation (3) from an inelastic 
structural problem, thus preventing the consideration Of 
any change of strain unit, may result in the deduction of 
unnecessarily restricted similarity conditions. 

3. SIMILARITY OS STRUCTURES IN EQUILIBRIUN 

Consider first a structure made of homogeneous iso- 
tropic material which obeys Hooke's law, Let it be spec- 
ified in size and shape by a necessary and sufficient set 
of linear dimensions a, b, c, ---, and let the loads on 
it be Pa, aP, BP, YP, and ao forth, where cc, 8, Y are 
dimensionless numbers. Young's modulus and Poisson's 
ratio will be denoted by E and ~1. .,_ 

elhe loads are take&as forces. If they are couples 
(ii) or pressures (p), it is merely necessary to write H/a 
or pas instead of P wherever P occurs. 
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These variables define the system. It will be 
required. to determine certain features of its state, 
usually a forts R, such as a redundant reaction, a 
force in a member, or a stiffener, a strsss U, strain 

or displacement 6. The lengths a b, c --- will 
bai supposed to contain those neoessary'to spioify'the 
point at whioh any of these are to be found. Then each 
of the quantities 

B 

a 1 can be expressed in terms of P', a, B, Y ---, 

Let there be n quantities, counting 008 of the column 
on the left. There are only two fundamental measuring 
units involved, since each of the quantities in equation 
(4) can be measured when, for instance, units of force 
and length are given, Denoting these units by 3 and 
L, the dimensions of the quantities in equation5(4) m&y 
be written in terms of these units, in order, as 

ml- i 
3, 0, 0, 0 ---, L, II, L ---, FL-7 0 

0 
(5) 

Since there are two fundamental units n-2 dimensionless 
products from any of the fQUr sets of variables in equa- 
tion (4) ean be formed, according to Buokingham'o theorem. 
It is easily seen by inspection that these may be taken as3 

R/P 

7 Gas/P 

0 

6/a 
J' 

P -, a, @, Y ---, b/a, c/a ---, P (6) 
Eaa 

3The constitution of the dimensionless groups is not 
unique. Par instance, P/Eaa' 

*la 
might be replaced by P/P,., 

or - for a column problem. 
Tl2EI 
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There is one relation between any one of the dimensionless 
groups in the column, and all the dimensionless groups in 
the row. Thus it is possible t0 write 

8 -= 
f4 

( 
P -9 a, p, Y --T 2, c --- p 

a Ea2 a a 
)I 

(7) 

where f,( >, fa( ); f,( 1, f,( 1, represent definite 
functional forms. These relations 'in fact stand for the 
solution of the problem in general form, covering, with 
invariable functional forms, all systems which can be got 
by giving particular values to the variables 
(41, and, of course, covering also all possible systems 
of measuring units. Thus fn particular they cover a 
structure and its scale model. The conditions of sfmilar- 
ity are the conditions that the funotions on the right Of 
equations(7) shall.have the same numerical value when oal- 
culated for the structure as they have when calculated 
for the model, and the simzlarity relations are then ex- 
pressed by the equality of the groups on the left of equa- . 
tioas (7) calculated for structure and modelp4 

The functions (supposed single-valued) will have 
identical values for structure and model if the arguments 
have identical values. The ratios a, 8, Y --- are the 
same if the several loads of the model be&r the same 
ratios to one another as the several loads of the struc- 
ture. The ratios b, 2 --c-, are the same for a model 

a a 
which is to scale in every signffscant himension. 

4 

*It is often possible to relax these conditions by 
the use of knowledge of the problem beyond that afforded 
by dimensional analysis, Examples ar0 given later, 
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Poissonrs ratio p must be the same (unless as in the 
case Of trusses and 'rigid frames free of torsional aotion, 
it is known to be without influence on the behavior con- 
sidered). Finally, it is necessary to make 

(5); = (5jg (8) 

where the subscript m stands for "modek" and I for 
"struoturO.N Thus when the model loads are scaled down 
according to 

*m Em aam 
c 3 Es aas 

(9) 

it will be true, by equating the left-sides of equations 
(71, that 

’ pm 0, Pm 8sa Pm 2 z -; AZ 
Bs *s Qs 

-- = - (by equation(8)); 
*s am3 's 

Bm= 1' 8m ai -=- 
0, '8, as 

(10) 

These results may be expressed in an alternative way 
by observing that since, (th e .other similartty conditions 
being already fulfilled) if‘any given vakue Cf P/Eaa 
is taken, the correspond5ng values of R/P, aaa/P, e, S/a 
are then the same whether model or struuture is consideredj 
.ths curves of R/P, uaa/P, e,,8/a plotted against P/Eaa 
from msasurements on the model, at various loads Pm, are 
also valid for the structure, 

* 

It is evfdently permissible to make the model and 
the structure of different.materials, so long as the 
Poisson* s ratios, if these are significant in the problem, 
are kept the same. 

The dimensionless number P/?a2 plays a part here 
which is analogous to that of Reynolds number (or the 
other characteristic numbers of fluid systems) in fluid 
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mechanics. It is proposed te oall it, or any like quan- 
tity I the “strain number. *‘ 

4, LINDAR AND NQNLINEAR STRUCTURES 

c 

r 

The foregoing results are not restricted, as most of 
the caloulationa of structural theory are, to small dis- 
placements. They oover flexible structures, such as very 
thin rings, or very slender beams and oolumns, where the 
deflections are too large to have a linear relation to 
the loads, although the strain components themselves are 
small and the stress-strain relations are linear. The 
departure from linearity arises from the changing shape 
Of the structure as it is loaded. There are also struc- 
tures in which the displaosments, though small, signifi- 
oantly affect the aotion (e.g., the moment arms) of the 
loads, as in the beam under simultaneous lateral load and 
axial thrust - the Ubeam-column,a or the elastic cable, 
initially just taut, under lateral load, which has a dis- 
placement proportional to the cube root of the load at - 
first, All such oases are grouped under the "nonlinear" 
designation, 

On the other hand, there is the extensive iinear 
group, where the displacements are linear functions of 
the loads, and the method of supergosition is valid, 
This group, of course, fngludes the majority of stress 
problems. When this linearity oan be assumed, it can be 
said that redundant reactions (unless the support ia Of 
;t;;;efiar kind, such as a'nonlinear spring), stresses, 

and displacements will all be proportional to 
the loa; v that is, to P. 

Reconsidering equations (7).will lead then to the 
requiremtirtt that R/P As to be independsnt of P, and 
this rttqu:',res that the function fl. should be independ- 
ent of the group P/Eat", or 

Since Young’s modu1u.s does not appear in any other group, 
it follows that R is independent of it; R may, however, 
still depend on Poisson's ratio* 

Usually, in the linear type of structure, U, 8 and 
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s will be proportional to P, so that instead of the 
last three of equations (7) the following equations may 
be written: 

a 
“a5 

P 
fa 

( 
a, p, y v-- b-, 2 --- P . 

a a ) 1 

P 8=----s 
Ea" 

8 P 
-5 f4 a, B,V 
a i 

The conditions of similarity are now merely the obvious 
ones of geometriaal similarity and similar distribution 
of loads (a, B, Y the same for structure and model), and 
equal Poisson*e ratfo if this is of significance in the 
problem. wfth these fulfilled, 

R P = K,P, Q * Ks -S e = & J? P 
a2 

-, 6 = g4 Ea 
‘ laa 

(13) 

where El K2 93 K4 are constants, the same for both 
structure and model. Thus in linear structures one meas- 
urement of each kind, at a eingle load, on the model is 
irr princfple all that is necessary for the complete anal- 
ysis of the structure. 

Alternatively it may be said that if the curves of 
R/P, Oa2/P, e, 6/a against P/Eaa are plotted from 
measurements on the model', the ffrst two wdll be straight 
lines parallel to the PIEa axis and the last two will 
be straight lines through the origin, and'the diagrams 
will be equally valid for the structure. 

When the load includes tne weight of the structure 
itself, represented by a specific weight w, a further 

dimensionless group, for instanae y, must be introduced. 

ft is then convenient to replace the first two groups fn 

the column on the Zeft of equation (6) by $,,i, which 

gives, in generaT, 
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B 
Eaa 

-1 

w 
i?T 

f, ,( 6’ y. & , ,@, y -*- $9 --- p, --- ) 

f a 
( .) > = (14) ’ 

f3 
( > 

But if the structure is a Usolid" one, such as a dam (ref- 
erence 3). having small deformations which do mot affect 
the action of the leads, if will be lfnear both's8 to P 
and w, and the problem divides itself into two, one to 
determine the effects 'of the gravity loading only, the 
other to determine the effeots of surface loading Only, 
fn the dam prablem the eurface loading would'bs water 
pressures, which can be described by a maximum pressure ' 
P, together with dimensioalees ratios to describe the 
distribution of pressure. These may be omitted. Then 
instead of P/Ea2, p/E, may be urPed. Consider, In par- 
ticular, the stress Q, which reprssente any chosen corn- 
poaent at any particular point. Slncs this is to be 
linear in both w aad P, 'it is necessary that 

u wa -=- 
E E 

fa (15) 

l'he E aow cencels, and ft follows that ths- 
stress is independent of E, but depends on &. A model 
should have the same Poisson's ratio, if it is signifi- 
cant, and must be geometrically sfmilar. The functions 
fa and 3fe then have the same value for both model and 
structure, and may be replaced by constants CL and car 
80 that 

u= Cl wa + cap (16) 

The two parts may be determined by separate tests, 
u-sing model material of any convenient density, or pro- 
ducing w Centrifugally, (or repplaoiag the bod 

3 
force 

PrObleW by a surfaoe load preblem (reference 4,) , 
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Different models, of different materials may'be used for 
the two tests, so long as p is kept the same. The ob- 
ject of the model tests may be regarded as the determina- 
tion of Cl and ca. It ia evidently not necessary to 
put any restrictions on the manner by which the prassure 

c P on the model is created, although at first sight, if 
the system is taken as a single fluid-solid system, it 
might appear ,that the specific weight of the fluid should 
be included in the list of variables;and then that a 

; I fl,uid of a 8saitab2.y different density must be used. Of 
CourGe, a change from the dimensionless relation (equa- 
tion (15>;) to the dimensional form (equation (16)) im- 
plies that. the.same measuring units will-be used for both 
structure and model. 

In many, cases it will be obvious that the condition 
of strict geometrical.similari.ty may be dispensed with 

. without loss of exactness, In simple trusses only the 
areas, not the individual dimensions, of br.0~8 sections 
4re' significapt. When there is simple bending, the prop- 
er moment of inertia, and for torsion, the proper tor- 
sional .rigiditg, may be provided without regard to shape. 
Bere, of course, knowledge obtained from detailed analyses 
of bars as structural elements is employed, Oonsidera- 
tioas Of this kind underlie Iheodorsen's discussion of 
similarity of propellers (reference 5) (as to vibrational 
frequencies) obtained by lengthening $n one proportion 
and changing cross-sectional dimensions in another, fir 

.tha differential equation of free flexural vibration of 
a bar may be written 

- &!L aa 
axa ( 1 axa 

+pafi,O 
.a? 

where p is the density, EI the flexural rigidity, and 
a the area of cross section, as functions of x. 'She 
process of solving this fcr the nonuniform bar to find 
the deflection y as a function of the axial coordinate 
x, ard dstermining the fundamental frequency, can be 
readily envisioned, even if not easily carried out, by 
anyone familiar with the process for the uniform bar, 

Let I be written as Aokoaf, 7 
0 

and A as 

Aofa 
0 ': 

where A,, k, are the area and radius of gyra- 

tion of,the base sact+on, and 1 the length, flfz 
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being given functibns, involving only dimensionless - 
that is, invariable,-parameters, Then the equation can 
be written 

P 
The frequency will then depend on the quantities - 

BAo2 
and 2, and on no other quantities. There is only one 
dimensionless combination of these quantities and the 
frequency f. It is the left member of 

fP ‘p 

-$ 
-= c 

ko 1 

(or any power of it) and. this equation must hold with C 
a constant (for a given mode) for all systems expressible 

by means of b, k,, i, i, fl $ , 
0 

and fa 

0 

f l Since f, 

and fa are invariable functional forms, the ratios of 
the 1’6 and the ratios of the A's for corresponding 
sections (x/E the same) must be the same for all the 
systems. But there is no restriction to any particular 
shape of cross section, aa by the proportional enlarge- 
ment of all dimensions of the cross section. 

Without the auxiliary information contained in the 
differential equation other dimensionless arguments, such 
as w% would have appeared, and the conclusions would 
have been more restrictive. 

Dimensional analysis alone gives a basic form of 
similarity. Further knewledge may give more general forms. 
St is a matter of obtaining the most detailed formula pos- 
Sib10 - and there is at least that yielded by dimensional 
analysis - and.considsring what is the broadest class of . 
systems to which it &pplies. The members of this class 
are then "similarl~ on the basis of the formula considered. 
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5. COMPOSITE STBUOTUBE 

If the structure is not all of the same material, it 
will be necessary to include in the row of independent 
variables in equation (4) the several Young's moduli and ' 
Poisson*8 ratios. Let these be E, E,, E, ---, and so 
forth, and P,, PI, Pa ---- Then to the row of dimension- 
less groups in (6) must be added 1,/E, E,,/E d-0, and so 
forth, and e-- and the same additions must be 
made to the Esgui",Ats o$ the functions in equations (7). 
The conditions of similarity now include the identity of 
El/E, Es/E ---, pl, p 

t 
--- for structure and model. The 

similarity relations equation (10)) then remain valid for 
the nonlinear type of structure, when the strain numbers 
P/Baa are made the same for model and structure. Corre- 
spondingiy, the treatment of the linear structure is modi- 
fied merely by the addition of the requirement of identity 
of 3,/E, 1,/E ---, pi, pa, ---, in both model and struc- 
ture, to the set of similarity conditions; 

6. PBBSCRIBED DISPLCEXENTS 

So far, the problem has been oonsidered as one in 
which tho ;loads are all given, and it is required to find 
reactions, stress, strain, and displacenent, Consider 
now given displacements, not necessarily small, the prob- 
lam being to determine theso same four quantities. In- 
stead of tl?o variables i-n (4) there are now 

Q depending on U, u', 8', y' ---, 

8 a, b, c -Be 1, p’ m-w (17) 

where the proscribed displacements are u, U'U, B'U, Y'U, 
and so forth. Again the numbar of dimonsionlcss.groups 
must bo two less than tho number of variables in (171, 
counting only one 'of tho column on the loft. It is evident 
that they may bo taken as 
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a/E 
U -9 a', $1, y1 ---, B, emi-- p 

8 a. a a. 

S/a 

and it is necessary to have 

. 
(18) 

R/la2 = ,fl 
( 

z, at, ~1, Y’ --- b, 2 ---, p, --- 
a a )f 

o/n ;‘Zfa c 8 = f3 t 
b/a = f, 

) 
1’ 

(19) > 1 
The similarity conditions now include identity of )I for 
model and structure, if it is significant, and also 
um us I-Z- - that is, 
am a8 

the imposed displacements must be to 

scale. The similarSty relations are then 

. 
and, alternatively, curves of R/Eaa, a/E, e, u/a 
8&llSt u/f.%, obtained from the model by varyfng Um are 
also valid for the structure. 

It may be observed that E does not appear at all 
in the last two of equations(l9). There is no other quan- 
tity contafning the force unit with which it can b'e corn- 
bined to gfve a dimensionless group. ft follows then 
that the distributions'of strain and displsoement are in- 
dependent of the Young's mcdulus, This is evtident from 
the well-known differential equatsoas of Lame for the 
special c&se of the linear structure, but perhaps not 80 
evident far the nonlinear struc'ture. 

In the c&se of the linear structure B, 0 8, and 
~hea;~r;roportional to U. Hence equations(l9j must take 

. 
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R/Baa = Y fl al, 
a 

~1, ‘~1 --- $ t --- p, --- 

a/E = y f, a ( 

6/a = f f, 
. ,i 

or R= KdJ, Q = K,E = K,U, valid for 

both model and structure white Kl G3 K, and P[, are 
Constants, the same for both model and atructupe. 

The additional argument\ Ed% Ed% and so forth, 
and I.L~, p2, and so forth, will be required in the func- 
tions Of equationn(20) when the structure is composite, 
and the additioval similarity conditians are as before. 

7, MIXED CONDITIONS 

When there are prescribed loads at some points, pro- 
scribed displacements (nonzero) at others, the set of 
variables oonsists of (4) and.(l7) combined, and the gen- 
eral relations can be taken in the form ..Y w 

aaz - = 
P 

f, 
( 

8 = f3 ( 
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. 
The similarity conditions are now geometrical simi1Brit.y * 

_ (b/a, c/a, etc., the same for structure and model), sim- 
ilar distribution of loads and prescribed displacements 
(a, 8, Y --- at, 8'. Yr --- the same), identity of the 
Poisson*s ratios if significant, and also 

P P = um us -=- 
Imama lZsasa' &m as 

(22) 

These being-fulfilled, the similarity relations (equations 
(10)) will again hold. The surfaces of R/P, aaa/p, el 
6/a plotted against P/E2 and U/a, determined from 
the model, are also va1i.d for the structure, 

. . 

8. CURVED STRESS-STBAIH RDLATICNS 

LOADING BEYOND TXE PROPORTIONAL 

AND ELASTIC LIXITS 

If the ordinary tonsfle or compressive stress-strain 
diagram of the material of-the structure is curved, it is 
customary to retain tho term "Young's Modulus," for the 
slope of the curve. b It is no longer a constant but a 
function of the stress or the strain, The strain number 
P/Da= now ceases to have any definite value characteristic 
of the wholo structure and its load. Suckingham$s theorem 
cannot be applied unless definite numerical values can, at 
least in principle, be given to all the variables involved, 
and it does not necessarily hold unless there is just u 
relation between these variables. (See roferonce 2.) In 
the set (41, with Q on the left, there would be a rela- 
tion bctwoen u and E as well as tha ralation batwoon 
all the symbols which is the requirad formula‘for U. 

In order to overcome these difficulties, it is ap- 
propriate to reconsfder the whole process of determining 
stress-strain relations experimentally, putting them in a 
form valid in all unit systems, and combining them with 
the equations of compatibility and equilibrium, and the 
boundary conditions, necessary for the solution of the 
problem. It is the stress-strain relations which require 
particular attention, no specftal measures being required 
to put the other equations in a form valid for all unit 
systems. In an experimental determination the stress and 
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strain will be recorded in definfte units, and the six 
components of stress ulr a2, and so forth, wfll be found 
as functions of the six components of strain (not neces- 
sarily small) el, 82, -aad so forth, say' 

O1 = el(el, e2 ---), aa = e2(e1, e2 ---I etc. (23) 

These relations involve only specific numbers q besides 
the u and e symbols, and they are, of course, true 
only in the units selected, 

Consider now the relations 

Q1=$J e1 e2 1 ( 
-9 -.) --- 1 , =2 - = 

El 
@a 

Bll f12 82 

( 2, 2, --- 1 eta: WI 
Q21 

E 
22 

where El, pla ---, and the b's are as yet merely arbi- 
trary parameters, When they are given the value 1, the 
relatfons (equations (24)) become identical with equations 
(23). They are now assigned the value 1 in the experimen- 
tal unit system. Let 
of strsse (ire., 

E,, 332 be assigned the dimensions 
their values in new unit systems are de- 

fined to be those obtained by applying the conversion 
factors appropriate to stress) and let the e's be as- 
signed the dimensi0n.s of strain (as discussed in set, 2). 
Then equations(24) are stress-strain relations of the ma- 
terial valid in all unit systems. For they are true in 
the original unit system. In a changed unit system the 
E's change by the same factor as the Q'S and the 8's 
by the same factor as the ars, 60 that the ratios a/E 
and B/E remain the sane, and the equations remain valid. 
The numbers q involved 9n the functional forms cp are, 
of aourse, not changed when the unit system is changed. 
That is, they are dimensionless numbers. 

The problem of determining a stress component Q in 
a structure with loads P, aP, BP, and so forth, and lin- 
ear dimensions a, b, c --- now involves (as dimensional 
constants) the E'S and EfS, the list being 

aj p, a, B ---9 a5, b, c -‘) P,, 32, E,, -, Eli, E12, e aa---(z5> 

Symbols Ei, Eijs i = 1, --- 6, j = 1, --- 6 h-~vebeer; ~?cld& 
and one additional fundamental unit (tht of strain) is abitted. 

5Creep, effeots of rate of stratn, et?. are not taken 
* into account. 
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,There are consequently three fewer arguments than symbols, 
and they may be taken as those appearing in the functional 
relation 

Ca2 -=f 
P 

b c a, p ---, -, - -- 3 - 33 ‘12 
a .- a El ' El 

---9 
T-- 11 

. 

This is the form the stress formula must take to be valdd 
in all unit systems, when the material has the stress- 
strain relations (23) in the original unit system and the 
E's and c's are defined as above. 

It is necessary now to redefine the E'S and cls, 
allowfng them to assume any values fn the original unit 
system. Then equations 6 i 
strain laws. The 

Els (24) d f n 8 a family of stress- 
and Q*s may change on account 

of a change of unit system, or on acc'ount of a change to 
another material. The general problem is now t0 find a 
stress formula to cover all systems obtainable by varying 
the Sgnbo~s in (25) (omitting Q as the dependent variable). 
The dimensional analysis of this problem results in equa- 
tion (26) again. Let there be a structure with definite 
values (in the Original units) of all the symbols, inolud- 
ing the E's and ~(8, which are, of course, determined 
by the material used. A model then may be constructed Of a 
different material belonging to the famLly (equations (24)). 
TO be able to interpret its behavior in the absence of 
further knowledge, it will be necessary to make all the 
arguments on the rfght of equation (26) the same as for 
the pXOtotyp8. This again, of course, leads to geometrical 
similarity, similarity of load distribution, equality of 
the strain numbers P/%a2 a but also 

That is, the E's of the model material must be those of 
the structure material multiplisd by some number ‘h, and 
the cfs similarly with an independent factor c1.B Thus 
if the stress-strain relations of the structure material 
are 

*I = @I (81s 0a) --->, 02 = @a (81, 82 ---), etc. (28) 

.B SNot Poisson18 ratio. 
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in a definite unft system, those of the model material 
must be 

Ql *1 e1 *, 82 
-= --Y --, , -- = 

x 
Q2 

( 
, 8tC, (29 > 

.x & CL 

T&es8 may be described as obtained by an affine transforma- 
tion from the former. In a two-dimensional problem where 
the variables are limited to those explicitly shown in 
equat$ons(29) (except for a third relation, such as that ' 
of incompressibilfty, yS8ldfng a third strain component 
in terms of elr 4321, QI in equations (28) could be rea- 
resontod as a surface over an 819 82 plane. Then the 
Ql surface in equation (29) is obtained by deformfag 
thfs surface by uniform extension in th8$Yq, direction 
by the proportion X, and uniform extension fn the e1 a, 
directions by the proportion p. The scal‘es of 03, elr 
*2 remain undeformed, The c2 surface is treated sim- . 
flarly, Inone dimension the stress&strain curve (equa- 
tion (29)) may be Imagined obtained by drawing that of 
th8 structure material (equation (28)) on a rubber she&, 
on which is placed a rigid axis frame bearing the rigSd 
scales, than stretching the rubber sheet under the frame 
to j+ .times its original length parallel to the strain 
axes, & time8 its original length parall8). to the str8ss 
axis. Tha factors X and ~1 may, of course, be arbi- 
trarily chosen, There is thus no necessfty to makg a 
model of the same matereal as the structure, even when 
curved stress-strain relations, elastic or plastic, are 
invO1V8d. But, in the plastic case, the functfons @ in 
equations (28) are not, in general, sfngle-valued, and, as 
pointed out in section 2, the dimensfonal analysis does 
not then ne&ssarily hold, However, the functions b8Com8 
single-value& if a definite mode of loading and unloadfng 
is prescribed, Thus the vazuea of P/E,a2 for the model 
must go through the same values fa the same Order as the 
values of PJlQ32 for the structure, for the above siml- 
larity iiules to apply. . 

Then the same material is used in both model and 
structure, the ratios X2/E,, and so forth, 8x2 kl' 
and so forth,in equation (26) are all unity, Similarity 
then requires, besides geometrto similarity '(b/a, c/a ---) c ’ 
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r 

and similar distribution of load (a, i3 --- ), equalit? Of 
the strain numbers P/E,a2. Since the use of the sane 
units for both model and structure is now contemplated, 
this means equality of P/as. It then follows from equa- 
tion (26) that Oaa/P is the same for both - for example, 
stresses at co32esponding points are equal. 

The arguments of this section may easily be extended 
to cover problems other than those of prescribed loads, 
such as those of prescribed displacements, or llmixeds 
problems, which have boon discussed in proceding sections 
for the ideal elastic material only. The modifications 
of the preceding traatmonts arc merely that E, roplacos 
E, in strain numbers P/Ea2, or R/Es' and the affine 
connection must hold between the stress-strain relations 
of model and structure material. 

It will be observed that the numerical value of El 
in equations (24) can be chosen at will in a given unit 
system. Pifferent choices will result in compensating 
differences in the numerical coefficiants. Onae El has 
been chosen in the selected system, however, its value iS 
fixed in all other unit systems since it has the dimen- 
sionality of stress. . It will sometimes be convenient to 
choose E, as the elastic Young's modulus of the material, 
for the sake of contincity with the olastic range in plot- 
ting. 

An ssample of a pro3lem of nonlinear stress-strain 
relations is provided by rubber springs, the rubber be- 
ing attached to steel mountings which may be regarded as 
undefornable. This, as a problem of given load, is one 
involving two materials, steel and rubber, but no synbOlS 
need be introduced for the properties of the steel, since 
it is rigid. The preceding theory shows that a simple 
similarity relation can exist when the same materials are 
used for two such springs which are geometrically similar. 
In particular, ?rhen the same rubber is used in tvo geomet- 
rically similar springs the curve of U/a against P/a2 
is the saue for both, the same units being used. Curves 
of this type have been published. (See reference 6.) ThO 
present discussion shows that they contain no "size offeot." 

An cxampla of sinilarity in the plastic range is sf- 
fordad by the simple tensile test. The similarity of the 
deformed shapas and the identity of the stress-strain 
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curves, for specimens g8ometrically similar but of diffsr- 
ent 81289, bus been experimentally conflrmed, and is known 
as Barba*s law. (See, for instaace, reference 7,) The 
dimensional analysis mad8 shows that such similarity ex- 
istz generally (the stressdepending only oa the strain). 

It is of interest to compare the deformed shapes of 
two test pieces, or other structures, of the same size 
but of two di.fferent materials with affinely related 
stress-strain laws (equations (28) and (29)). A dis;jtca- 
ment formula must correspond to equation (26 > with 
on the left instead of craa/P, Then the.values of 6/a 
for the two pieces are the same - that is, their deformed 
shapes are the same - when their values of P/'EI,as are 
the same, If th8 pieces are of different sizes and geo- 
metrically similar in the undeformed state, they are also 
geometrically similar in the deformed state at equal val- 2 -=, 
ues of P/'Blla2. __. --I c;,:-. 

..~-._.I- I 
Nadai (reference 8) quotes as an example of similar- 

ity izil~lastic-plastic systems, which, of course, are ia- 
eluded in the theory c;f this section as well as fully 
plastic systems, the, case of a series of balls fndenting’ 
blocks. 1f the material is the same for all the balls 
and for all the blocks, and if the loads are as the 
squares of the ball diameters, the stresses will be the 
s'ame at corresponding points and the depths of the inden- 
tations and the diameters 'of the plastic zones on the 
block surface will be as the diameters of the balls, pro- 
vided the effects of time of loading are n8glfgible. A 
time variable could be includ8d in the dimensional anal- 

' ysis and the similarity conditions correspondingly extended, 

9. BUCKSING 

Returning to the problem of prescribed loads of sec- 
tions 2 and r, la Order to consider questioas of stability, 
it is appropriate to review the several types of buckling 
4hich are nom recognized. There is the idealized buckling 
of geometrically perfect struts,fllustrated by the load 
deflection curve of figure l(a), where no deflection at 
all occurs until the critical load is reached at A, and 
above the critical load there is an unstable straight 
form B and a stable .deflected form C, S0condly, there is 
actual buckling of a geometrically imperfect strut, of a 
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Deflection 
. (4 

Deflection 
(b) 

Deflection 
(c) 

Deflection 
63 

Figure 1. 

slenderness such that there is no failure of proportion- 
ality until well beyond buckling, This behavior is illus- 
trated by figure l(b). There is a unique deflection at 
each load, and no instability in the se'nse of figure l(a). 
The sense of "buckling" here is, of course, the inordfnate- 
127 rapid increase of deflection when the load is 5n the 
neighborhood of the Duler .critical value. 

Thirdly, there is buckling after the proportional 
limit has been exceeded (see, for instance, reference 9). 
characterized by the type of load deflection curve shown 
fn figure l(c). Here there fs true mechanical instability 
at and beyond the maximum load point, and thfs maximilm 
load is the critical load. 

Finally, there is buckling of the snap-over, or "oil- 
canning, I1 type of which the kinds of curve shown in fig- 
ure l(d) are characteristio, The sketch in figure l(d) 
of a slightly curtred bar or plate with rigid or stiff end t 
or edge constraints and a transverse load illustrates one 
way of realfzing such a cu+ve, (See reference 10,) It 
appears that the buckling of shells may belong to this 
type rather than to that of ffgure l(a) or l(b). Points 
on the rising part of the curve 08 represent stable 
forms, but there are alternative forms at larger deflec- 
tions, to which the system may jump when assisted over 
the peak by a suitable dmpulse. (See.reference 11.) 

Instead of load-deflection curves (P against 8) 
P 8 - may be plotted against -, 

la2 a regarding them as ex- 

amples of the 6 P 
z against - curve discussed in section 

Ea2 
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3. These curves are then valid for both a mode'land its 
prototype. Bowever the critical load in figures l(a), 
lb 1, UC 1, and l(C) may be defined, it will be done by . 
sfngling out a particular point of this curve, and this 
point will characterize the bucklfng for both model and 
structure, Thus buckling will be cheracterieed by a de- 
finite strain number ??/=a2 ahether.the displacements 
concerned can be regarded as small or not. This is evf- 
dently analogous to the characterfsatfon of turbulence liy 
a definite Reynolds number* The critical loads Pmcr 
and P scr of model and structure are related by :.. * 

P Pa 
2 

ASZ=- mm 
P s scr Bfsasa* 

Vhere curved stress-straia relatfons, elastfc or fn- 
elastic, must be considered, the discussion fn section 8 
permdts making the same statement about the strain number 
Ph,a2, If model and struoture are of the same material 

P mCr P sur -SW 
2 3 

am au 

(the same units being used for both) and the critical 
stresses are the same whether the bucklfng fs within the 
elastic range or not. 

II, T!EISTS 01,BUCKLED TBIN SQUARB PLATIS IN 

SHEAR, WITIf AXD FITBOUT BOLXS 

SUXMARY 

In order to test the validity of similarity principles 
for structures involving buckliqg and plastic flow, meas- 
urements of strains and displacements were made, at 
Cornell University, on squarg thin sheets in shear, with 
and without holes- 0ith certain exceptions, the measure- 
ments follow closely the indOc@tiono of the simflarity 
principlea, The results are shows in figure8 5 to &2, 
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which are dimensionless plots of the measurements, HOX- 
similarity the points in each figure should fall on a 
single curve. 

10, TEZj TEST PROGRAM .- 

It appears from the engineering literature that the 
. possibility of drawing such conclusions as those of part 

I is frequently overlooked, and that unnecessarily elab- 
orate and expensive made1 testing has been carried out in 
recent years, Similarity in the plastic range is well, 
known to some, but others have denied the possibility of 
it on the grounds that the physical constants required for 
the specification of plastic behavior in metals are not 
defined, Barbars investigation of similarity in the ten- 
sile test has been referred to in section 8, No reoord 
has been found of investigations of similarity in plastic 
bending or torsion, but in vies of the dimensional analy- 
sis of section 8 there can be little- doubt that it would 
be found to exist. Ro tests of this kind were therefore 
included in the program. 

c 

The aircraft problems of chief interest are those of 
thin-walled structures, The difficulty of making satis- 
factory thin-walled models has been emphasised by Saunders 
and Windenburg (reference X2), and others. The wall 
thicknesses in the prototype being already amall, those 
of a small model will be very small, and lack of flatness 
of the sheets becomes .poportionately more important. 

11, TEST SFDSIMRR AND QUANTITIRS TO BEI MWASURPJD 

The structure chosen for the tests was the square 
panel of thin sheet 24S'-T aluminum alloy confined in a 
hinged frame of nrigidn bars (heavy angle irons were em- 
ployed) and subjected to shear, as indicated diagrammat- 
ically b.y figure 2. Specimens with and without central 
lightening holes were tested. Three sizes of frame (de- 
signed as nearly as possible to be geometrically similar 
- see fig. 3, table I), two sizes of hole, and five 
thicknesses of sheet were used* This structure presents 
certain of the fundamental probleas of the thin web beam - 
the strength of the panel and its mode of wrinkling, 
which are important in themselves - and affords a 
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convenient trial of the possibiltty of making reliable 
small scale tests when thin flat sheets are involved, AS 
treated here, it 1s essentially a problem of large dfs- 
placements going beyond the elastia limit, 

Taking the bars of the hinged frame as rigid, the 
problem involves deflections (6), stresses (u), and strains 
(e), in a plate defined by the followfng quantities: , 

The side of the square (aj (Inside dimension of 
angle frame) 

The thickness of the sheet (t > 

The diameter of the central hole (D) 

under a nshearing load" P (fig, 2 ). 

The dimensional analysis then indicates relations of 
the form . 

Ii- - f, 
a 

u P tD -=f P 
El = la"' ;I' ;' 

> 

where 3 is a dimensional constant as defined in section 
8 if there is plastitc deformation, or'a curved stress- 
strain relation, or merely Young's modulus below the elas- 
tic limit. Is any case, when the model is of the same ma- 

terlal as the prototype, the curves of k against P 
82' 

of 0 against p and of e against P 
. . :.z ' 

‘t 
Ba 

are the same 

for all panels fn which -, 5 are the same. For this in- 
a a 

vestigation, Youngls modulus of 10,5 % 10' was used for 



. 
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ES and all curves mere plotted against P 
Ea'. 

Since the 

strain, not the stress,can be measured directly, .the test 

curves are of 6 
.-zr 

and e* 

The measurements of the panels proposed for the tests 
are shown in table II. The entries connected by broken 
lines are groups with the same values-df both t/a and 
D/a, but represent panels of.different size. The choice 
of these was governed by the available thicknesses of 
sheet. Similarity is established if points of all mem- 
bers of each group fall on the same dimensionless curve. , 

I 

TABLE, I (See fig. 3) 

~&Q4E DIxENSIONS 

--- 
t 

---- 

Dimensions Large frame 
mm_---------- 

a 28 'f 

b 31.5" 

C 36.0n 

d l*" 

8 ill 

f 3** 

g 4 x 3'/3 x & 

-- -- *----- 

v-- 

Medium frame 
--- ----- 

17,4n 

19.58" 

22.4" 

af4" 

3/8'f 

-?.OU 

2&X 2 X 5/16 
---c----- 

Small frame 
-e--- 

------7 
8.75tf 

9.81" 

11.25" 1 

3/8R 

3116" ! 
1 vre” . 

lh X lye X 3116 

12. BXPERIMENTAL PROCEDURE AND APPARATUS 

The hinged frame holding the plate‘was supported lat- 
erally and loaded by means of a hydraulic jack. 
2.) The deflection 

(See fig. 
6 was measured across the long 
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. . 

diagonal by means of a dial gage, thfz measurement being 
independent 00 any rotation of the supporting wall,, 

The strain measurements were made with the SR-4 type 
A-l Baldwin Southwark electrical strain gages, The gages 
were connected in the dnmmy-gage temperature-compensated 
bridge circuit shown in figures 4 and 25. The bridge 
sensitivity was 0.000026 inch per inch per millimeter on 
a graduated slide wire for null balance of the bridge. 

In plates without holes, the electrfc strain gages 
were placed along the center line of the diagonal tension 
fold, which appeared at approximately 42* with the hori- 
zontal sides. Two of the gages were placed in a direc- 
tion perpendfcular to this lfne, one on each side of the 
sheet, so as to measure the bending and direct compress&on. 
In plates gPith holes, the gages were placed at the edge of 
the hole at the positions of masfmum bending and maximum 
tensfon, These poslt$ons can be seen in the photographs 
of the test specimens (figs, 26 to 40). 

In addition to the preceding measurements, the maxi- 
mum amount of lateral buckling y vas measured from the 
initfal plane of the plate. Thi-a appeared at the middle 
of the center diagonal tension fold for specimen without 
holes, and at the edge of the hole along a line approxi- 
mately 42O with the horizontal sides for specimen with 
holes. 

la. TNST RESULTS 

Measurements of the specimens tested are given in 
table III. Be-cause of the variation in actual sheet 
thickness from values contemplated, it was not always 
possible to abtain exact duplication of numbers given in 
table II. 

Four sets of ourve~ were drann for sash similarity 
group. (See figures 5 to 12.) They are: 

Curve (a) Tensile strain % against P/Ea2 

Curve (b) Bending strain *b against P/Xa2 

IlurPe (c) Diagonal displacement S/a against P/Es' 

Curve (d) Lateral displacemgnt yfa against P/la’ 



WACA TN No. 933 29 

. 

. 

. 

* 

Pa 
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The dfrect compressive strain in each case was found to 
be quite small and w'as therefore not plotted. The follow- 
ing symbols were used in drawfng the curves. 

A values for small frame 

X values for medium size frame 

0 values for large frame 

Figures 13 to 24 represent a summary of the average 
curves grouped in such a way to show the variatfons due 
to different values of t/a and D/a, 

Photographs of the speqfmens are shown in figures 
25 to 42. Tabulated data for the curves are given in 
the appendix. 

TABLR XI.- PROPOSID TPIST SPDCIXS$RS 
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I 

II 

------- 
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------ 

-I- 

t 
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( 
t 

( 

t 

D 
z 

-- -- 
3 
D 
I 
I 
I 
--_I 
I.428 

.428 

.428 
,428 
,428 

--- 

I.643 
,643 
,643 

--- 

t. 

0.064 
.051 
.040 

..032 
,020 

--- 

0,064 
,051 
.040 
.032 
,020 

em--- 

0.064 
,040 
.020 

e---q 

.---- -------r-m -----_I_ 
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-\ 230,- -\. 
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(Key tb Curves, Figs. 5 to 24) 
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Fig. 5 (a 1 
rig. 6 (a) 
Ifg. 7 (a) 
Fig. 8 {a) 

w---1 
Ffg. 9 (4 
Fig.‘ 10 (a > 
Fig. 11 (a) 

------ 
Fig. 12 (a) 
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P/aaE 
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*II 
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da 

---+--- 
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*I 
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+ 
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m-w 

s imf- 
arrty 

group 
-- 

1. 

I 

1 

m-w 
II 

---- 
III 

d--m 

-- 

-D 
.Z 

A-. 
0 
0 
0 
0 
c 
-- 
0.42f 

.42E 

.42E 
,428 
.42G 

--- 
0.642 

.64Z 

.64? 
-- 

TABLE III,- SWCIkl& TESTZD 

i I 36" framet22.4! frame}ll,23" fram, 
& a = 28-O*, a = 17,4* , a = 8,7Ej" 

nominal 
I 

t x lo6 i f x lo6 ; 
iC L 

4 x lo= 

0.064 
,051 
.040 
.032 
.020 

0.064 
.051 

228,) 368. I 
-a\ 

,040 - r-z-230 ‘--'-. 
,032 

1 - 
-181=-I m-) 360 

,020 I 229 I 

0.064 
l 040 

I 

228-w; t 

,020 I 
--23Ow _ + 

. ---228 

14. XXPECTED 13RRORS 

Similarity measurements must be made over geometrf- 
tally similar regions. This requires that the strains be 
measured over geometrically semilar gage lengths as well 
as geometrically similar positions. Since the site of 
the.electrical strain gages used for strain measurements 
was invariable, the strain areas covered by these gages 
were proportionately larger for the small specimen com- 
pared to the large specfmen, In regions'where the varia- 
tion in strain is large - that is, zear the edge of the 
central lfghtening hole - this deviation from similarity 
may be expected to Introduce large variations in the 
strains measured, To investigate-the magnitude of such 
variations, the following analysis was made. 

Stresses in the radial and 9 directions Lear the 
edge of the hole, due to shear, are first obtained by 
superimposing uniform tension and pompressfon, equations 
for which are given by Timoahenko, (See reference 13, 
p. 77.1 
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. 

. 

'Jniform t&sion 

33 

i'- 8 
3 

O6 =;(,.~)-~(,.2T)cos2s 

S s 
i 

/ 
zig. 43. 

,,=,~~~~+,~+~-~).,.2E 

Uniform compression 
S 

LYl 

0-6 F-q+~)4*~)CDB2B 

/--‘. 
! 
d 

0 
u~=,~~(1-~)+~(1+~~~)co828 

Fig. 44, 
S 

Superimposed 

6 

Stresses at A due to shear. 

S Fig.46. 

Strain in the 8 direction at A due to shear. 

Be6 -= 
S 

strain concentration 
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The strain concentration as a function of the radial 
distance is plotted nondimensionally in figure 47. The 
-position and dimension8 of the strain gages are shown in 
figure 48. 2or each case, the center line of the tensile 
gage was 0.34 inch from the edge of the hole. The strain 
concentration for the various panels and the calculated 
variations are given in table IV. The analysis indicates 
a possible strain variation of 39 percent. 
this magnitude were found only in one test. 

Variations Of , 
However, it 

should be remembered'that in all tests the load was car- 
ried well beyond the proportional limit; while the analysis 
holds only below the proportional limit, 

TABLE IV.- STRAIN CONCENTRATIOU FACTOR FRO11 FIGURE 47 

B b r 
a 

(in. > 
=b+0.34 p leg 

s 
Ratio Variatio 

(percent 

b.428 1.88 2.22 ' 0.846 2.43 1.00 s-----B- 

,428 3.73 4-07 .91'6 3,04 1.25 25 

.428 6.00 6.34 .947 3.37 1.39 39 
b 

.643 2.81 3.15 .891 2.81 1.00 -------- 

.643 5.60 - 5.94 .942 3.31 1.18 18 

.643 ‘9.00 9.34 .963 3.56 1.27 27 

15. DISCUSSION OZ' TESi RESULTS 

In the test curves (figs. 5 to 121, similarity in 
the behavior of the specimen8 of different sizes is dem- 
onstrated if the test points for the dif-ferent specimens 
fall on a single,curvs. In several cases this occurs 
very accurately. In several Other8 there is considerable 
scatter, raising the question whether this is due to in- 
correct expectatians of similarity, to cause,s which 
prevent satisfactions of similarity, or to errors of 
measurements, 
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l 

The answer to this questfon cannot be made with any 
assurancs. No reason can be found for the alinamont of 
test points for one group of specimens and the scatter of 
goints for the same measurements of another group. How- 
ever, some possible causes for this lack Of uniformity 
can be listed as follows: 

1. Possible variation in the properties of the dif- 
ferent Sheets 

2. Variation of sheet thicknesses 

3. Sheets were cut and Used without reference to the 
direction of rolling 

8. olearance in the bolt holes, both in the sheets 
and the frames, is approximately the same for 
the three sizes of specimen, thereby being 
proportionately larger for small specimens 
compared to the large specimens. 

5. Exact duplicatfon of similar positions for the 
electrical strain gag88 was difffcult to Obtain. 

6. Size effect of electrical strain gages (discussed 
under errors) 

7. Beoause of large differences in range of load8 
between large and small specimens, it was nec- 
essary to use two different sizes of hydraulic 
jacks for loading. The release load at the 
end of each Stroke is different for different 
jacks. 

8. The method of measuring lateral deflection of 
Sheet8 was not entirely Satisfactory. A heavy 
bar vas placed across the frame and the dis- 
tance between it and the sheet was measured. 
This method was found to be somewhat unreliable 
In that the frame edges were not always free 
from rotation. 

9. Yielding of test jig is greater for lar.ger speci- 
mens and although the diagonal displacement 
should be independent of any small rotation Of 
the supporting wall, if such rotation produce8 
bending of the frame, it could result in errors 
of the diagonal measurement. 
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The average curves of figures 5 to 12 were replotted 
in figures 13 to 24 to show the variations resulting from 
changes in t/a and D/a. The results appear reasonable 
in that none of the curves CrOSSed out of order from 
their proper domain. 

The results as a whole indicate a reasonable degree 
Of Similarity attained in mOSt 8peCimenS. An average of 
the probable error of the various measurements was esti- 
mated from the curves to be as follows: 

(percent) 

eT- 8 

'b - 10 

8 - 10 
a 

9 - 15 
a 

Variations of at.least twice the average errors may be 
expected in individual measurements. Improvement in the 
technique of testing and measurement should result in 
greater accuracy. 

l 16. COXOLUDTNG REMARKS 
. 

The test program was carried out with the degree of 
-accuracy usually met by aircraft industriei, and no ef- 

fort was made to go beyond this fn refinements. Con- 
sidering the difficulty of satisfyfng accurately to every 
detail the similarity condition8 for thin-walled section, 
the test results indicate a fair degree of similarity 
established. It is the authors* opinion that greater ac- 
curacy can be obtained with further refinements. 
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APPENDIX TO PART II 

SYKB OLS 

t thickness of sheets 

a inside dimensions of sheet (See fig. 3.1 

D diameter of hole (See fig. 3.) 
. 

P load pounds iSee fig. 2,) 

6 displacement along diagonal (See fig. 2.1 

81 ea e3 e4 strains 

0T strain parallel to tension fold 

eb bending strain 1 to tension fold 

eC compressive strain L to tension fold 

Y lateral displacement of sheet 

College of Engineering, 
Cornell University, 

Ithaca, B. Y., January 26, 1944. 
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Figure 4.. Electrical strain gage circuit. 
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a = 177.4" 
t = ,021" 
D 0 = 

t/El = x31 x 10'6 
D/a = 0 

Figure 27. 

a = 28.01' 
-t= :032 " 
D=O 

t/a = 114 x lo+ 
D/a = 0 

Figure 26. 

* . 

Laboratory eet-up 

17.4" frame 

FiErure 25. 
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.- 
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D 0 = D 0 = 28.0" frame 
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t/a I 182 
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Figure 30. Figure 29. Figure 28. 
. . 
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Figure 33. 
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Blguxe 32. Figure 31. 
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Figure 36. 
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Figure 35. 
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I Figure 39. 
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Figure 40. - .Teated panels. 

Figure 41.0 Tested panels. 

Figure 42.9 Relative. sizes of frames. 
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